
MATHEMATICAL MODEL OF A TURBULENT GAS FLOW IN A ZIGZAG 

CHANNEL 

L. P. Kholpanov, B. R. Ismailov, and 
N. P. Bolgov UDC 532.517.4 

Many heat- and mass-transfer processes in the chemical industry and adjacent areas proceed 
under turbulent flow conditions for the medium. Study of the flow in a zigzag channel that 
is a component element of highly efficient heat- and mass-transfer apparatus is of special 
interest. 

The turbulent flow in a zigzag channel is investigated numerically by the method of the 
paper [i] in this report. An element of such a channel is represented in Fig. i (the shaded 
area). It is assumed in the mathematical modeling that the flow in the channel is planar 
and the Kolmogorov-Prandtl hypothesis ~ef = CDP k~/2s is valid. 

The desired functions ~, m, k, s characterizing the turbulent flow in the desired channel 
are found from the solution of a system of nonlinear partial differential equations of ellip- 
tic type, whose general form in a Cartesian coordinate system is the following 
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The x coordinate is directed along the flow, and y is transverse to it, i.e., 6z = x, g2 = Y, 
Zz = s = i, r = i. Values of the function a~, b@, c~, d#, #, in Eq. (i) are represented in 
the table. The specific equation for each function ~, ~, k, s is obtained from (i) with the 
coefficients indicated in the table taken into account. 
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TABLE I. Values of the Param- 
eters of E, uation i 
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Fig. i. Network integration domain. 

As we see, Eqs. (3) and (5) are the Navier-Stokes equation in stream function-vortex 
variables for the laminar flow mode. 

For the kinetic energy of the turbulent fluctuations 
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The source term of the turbulent fluctuations can be represented as follows 

S~ = W~ae.~ t -- Dk. 
Here 
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where C D is a function of the Turbulent Reynolds number. For large numbers Re t for which 
the turbulent flow is modelled in the zigzag channel, C D tends to a constant value. 

For the scale of turbulence 

ax 

The expression for the source number Ss in [i] is obtained in the following form 
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St = Cspk i /2 - -C~lk -~W~ac .~ t '  (11 )  

where  CS, C B a r e  f u n c t i o n s  o f  Re t t e n d i n g  a s y m p t o t i c a l l y  t o  c o n s t a n t  v a l u e s  as  Re t i n c r e a s e s .  

On t h e  c h a n n e l  s u r f a c e  S k = 0, S~ = 0. 

In  t h e  d i m e n s i o n l e s s  v a r i a b l e s  x = x 'H ,  ~ = r o, ~ = ~*Uo/H, k = k*U 2, Pe f  = p~fHpU0, 

= s u = u*Uo, v = v*Uo, t a k i n g  ( 7 ) ,  ( 9 ) ,  and (11)  i n t o  a c c o u n t  Eqs.  ( 2 ) ,  ( 4 ) ,  (6 )  and 
(10)  t a k e  t h e  form 
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where 
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A nine-point scheme [i] oriented "against the flow," which assured stability of the 
computation, was used for the numerical solution of the system (12)-(15). The system of 
finite-difference equations took the following form 
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Bi+l,i = (bw,i+l,z@ b~o i,i)/2; Bi-1,~ = (b~ i - l , i  Fb~ i,i)/2; 
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IZml i s  the absolute value of the circular bracket, m = i, 2, 3, 4. 

The second-order derivatives were replaced by f i n i t e - d i f f e r e n c e s  by the formulas 
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The dynamic boundary conditions on the solid bounary are given in the form ~ = const, a~/ 
an = 0 during solution of the problems in the stream function-cortex system. Therefore, the 
boundary conditions are not given for the vortices, which is one of the characteristic singu- 
larities of the solution of the Navier-Stokes equations in the stream function-vortex system. 
Apropos solvability of the boundary conditions for the vortex, sufficiently many approaches 
exist [2]. 

The following boundary condition for the vortex is selected in this report 

[ 1 (0r176  n3q_mgrn2 ] (21) 
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where the gradient of the vortex along the normal (aw/an)g r is taken with channel geometry 
taken into account, i.e., is calculated from the formula 

Oo~lOn = Oo~lOx sin (n, x) -1- &olOy cos (n, y), 

where n is the distance between the boundary surface and the nearest internal node. 

Linear extrapolation is used in approximating nodes outside the contours S and the deri- 
vatives at the pionts Q and R are found as the mean values in adjacent boundary points (Fig. 
i). 

The turbulence constants in the computational formulas are taken in conformity with 
values known in the literature: Cp = 0.I, C D = 0.055, C S = 0.0397, C B = 1.05. It should be 
noted that the variation of certain constants (C~, C B) yielded no substantial changes in the 
final results. 

The sequence for computing the stream function, vortex intensity, kinetic energy, and 
scale of turbulence was the following. 

I. Using (17)-(20) by means of given values of ~ at the inner nodes values were found 
for the coefficients Aj,i, B4 i, C~ i, D~ .. Used for the boundary nodes in the calculation 
of these coefficients is (21)~'whic~ 4'I taking channel geometry into account, took the following 
values (for instance, for the first half of the left boundary) 

03. .  ~ - - -  - -  
3(~ i - l , i+x- -~ i  ~) _}_ c~ i }-~ 

5h 2 5 
(22) 

The structure of the formulas is analogous to (22) for the remaining sectiohs of the channel 
boundary. 
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Fig. 2 Fig. 3 

Fig. 2. Isolations of the stream function in a zigzag channel (a = 
ii0 mm, H = a, ~ = 45 ~ ) for Re = 4"104 . 

Fig. 3. Change in vertical velocity component in different channel 
sections (Re = 4"104 ) at different heights: i) x = 0, 2) 0.2, 3) 
0.4, 4) 0.8 (y is the distance from the left boundary of the channel); 
the points are test data. 
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Fig. 4 Fig. 5 

Fig. 4. Kinetic energy distribution of turbulent fluctuations over 
the channel section (Re = 4"104 ) at different heights: i) x = 0.2, 
2) 0.4, 3) 0.8, 4) i. 

Fig. 5. Effective viscosity distribution over the channel section 
(Re = 4"104 ) at different heights: i) x = 0.I, 2) 0.3, 3) 0.8, 4) i. 

2. The desired function # = ~, m, k, s is calculated. 

3. The achievement of the accuracy of solving the system of equations (12)-(15) is 
verified: max {I~(2)--~(i>I/I~(~)I}<~ 

4. The computation is repeated, starting from No. 1 when the conditions for achieving 
the required accuracy are not satisfied. 

The velocity profile, pressure drip in the channel, effective viscosity, and other dyna- 
mic quantities are determined from the functions ~ = ~, m, k, s found. 

The computation is performed in a broad Reynolds number range (Re = 2"103-4"104). The 
characteristic flow pattern is represented in Fig. 2. As follows from the computation, 
vortices are formed on both sides of the channel. The stream function isolines are compres- 
sed behind the acute angle of channel rotation, which indicates the formation of a domain 
with predominance of the vertical velocity component (for example, for u 0 = 5 m/sec, u 0 = 
25-30 m/see). This circumstance contributes to acceleration of the process when using a 
vertical zigzag channel as contact unit in heat and mass transfer processes. Stagnant zones 
are formed at the right wall in the channel rotation domain, which reduces the heat and mass 
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transfer efficiency in this area. This is also confirmed by the behavior of the other 
dynamic flow characteristics represented in Figs. 3-5. 

Results of an experimental measurement of the vertical velocity component at different 
channel sections are represented in Fig. 3. Data on the velocity distribution are obtained 
by using a cylindrical probe. The measurements are performed by the method described in [3]. 

The approach examined for describing turbulent incompressible fluid flow affords the 
possibility of obtaining total hydrodynamic information about incompressible fluid flow in 
not only zigzag channels but also in channels with any geometry (for instance, wavy channels) 
whose utilization will permit significant intensification of heat and mass transfer process. 

NOTATION 

~, ~ef, molecular and effective turbulent viscosity; C~, a constant; k, kinetic energy of 
turbulent fluctuations; s local scale of turbulence; ~, stream function; ~, vorticity; FkeV, 
transfer coefficient of the kinetic energy of fluctuating motion k; Fie v, transfer coefficient 
of a vortex with scale; a k = Bef/FkeV, as = Bef/F~ef; S k, source term of turbulent fluctua- 
tions; Wta n t, kinetic energy produced by turbulent tangential stresses per unit time; Dk, 
energy dissipation per unit volume comprising the negative part of the energy source; Re t = 

pkl/2s -l, turbulent Reynolds number; Re = U0pH/~, Reynolds number computed according to the 

mean flow rate; H, channel width, U0, mean mass flow rate; ~gr, ~vn, stream function values 

at the boundary and adjacent nodes; h x = hy = h, network spacing. 
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